Search results

1 – 4 of 4
Article
Publication date: 9 September 2014

Rainer Müller, Matthias Vette and Matthias Scholer

The paper aims to deliver an approach of how lightweight robot systems can be used to automate manual processes for higher efficiency, increased process capability and enhanced…

1234

Abstract

Purpose

The paper aims to deliver an approach of how lightweight robot systems can be used to automate manual processes for higher efficiency, increased process capability and enhanced ergonomics. To show how these systems can be utilized in practice, a new collaborative testing system for an automated water leak test was designed using an image processing system utilized by the robot.

Design/methodology/approach

The “water leak test” in an automotive final assembly line is often a significant cost factor due to its labour-intensive nature. This is particularly the case for premium car manufacturers as each vehicle is watered and manually inspected for leakage. This paper delivers an approach that optimizes the efficiency and capability of the test process by using a new automated in-line inspection system whereby thermographic images are taken by a lightweight robot system and then processed to locate the leak. Such optimization allows the collaboration of robots and manual labour which, in turn, enhances the capability of the process station.

Findings

This paper examines the development of novel applications for lightweight robotic systems and provides a suitable process whereby the systems are optimized in technical, ergonomic and safety-related aspects.

Research limitations/implications

A new automated testing process in combination with a processing algorithm was developed.

Practical implications

To optimize and validate the system, it was set up in a true to reality model factory and brought to a prototypical status. Several original equipment manufacturers showed great interest in implementing the system in their assembly line.

Social implications

The direct human–robot collaboration allows humans and robots to share the same workspace without strict separation measures which is a great advantage compared with traditional industrial robots. The workers benefit from a more ergonomic workflow and are relieved from unpleasant, repetitive and burdensome tasks.

Originality/value

A lightweight robotic system was implemented in a continuous assembly line as a new area of application for these systems. The automated water leak test gives a practical example of how to enrich the assembly and commissioning lines, which are currently dominated by manual labour, with new technologies. This is necessary to reach a higher efficiency and process capability while maintaining a higher flexibility potential than fully automated systems.

Details

Assembly Automation, vol. 34 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 15 June 2015

Matthias Scholer, Matthias Vette and Mueller Rainer

This study aims to deliver an approach of how lightweight robot systems can be used to automate manual processes for higher efficiency, increased process capability and enhanced…

Abstract

Purpose

This study aims to deliver an approach of how lightweight robot systems can be used to automate manual processes for higher efficiency, increased process capability and enhanced ergonomics. As a use case, a new collaborative testing system for an automated water leak test was designed using an image processing system utilized by the robot.

Design/methodology/approach

The “water leak test” in an automotive final assembly line is often a significant cost factor due to its labour-intensive nature. This is particularly the case for premium car manufacturers as each vehicle is watered and manually inspected for leakage. This paper delivers an approach that optimizes the efficiency and capability of the test process by using a new automated in-line inspection system whereby thermographic images are taken by a lightweight robot system and then processed to locate the leak. Such optimization allows the collaboration of robots and manual labour, which in turn enhances the capability of the process station.

Findings

This paper examines the development of a new application for lightweight robotic systems and provides a suitable process whereby the system was optimized regarding technical, ergonomic and safety-related aspects.

Research limitations/implications

A new automated testing process in combination with a processing algorithm was developed. A modular system suitable for the integration of human–robot collaboration into the assembly line is presented as well.

Practical implications

To optimize and validate the system, it was set up in a true to reality model factory and brought to a prototypical status. Several original equipment manufacturers showed great interest in the system. Feasibility studies for a practical implementation are running at the moment.

Social implications

The direct human–robot collaboration allows humans and robots to share the same workspace without strict separation measures, which is a great advantage compared with traditional industrial robots. The workers benefit from a more ergonomic workflow and are relieved from unpleasant, repetitive and burdensome tasks.

Originality/value

A lightweight robotic system was implemented in a continuous assembly line as a new area of application for these systems. The automated water leak test gives a practical example of how to enrich the assembly and commissioning lines, which are currently dominated by manual labour, with new technologies. This is necessary to reach a higher efficiency and process capability while maintaining a higher flexibility potential than fully automated systems.

Details

Industrial Robot: An International Journal, vol. 42 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 August 2021

Anil Kumar Inkulu, M.V.A. Raju Bahubalendruni, Ashok Dara and SankaranarayanaSamy K.

In the present era of Industry 4.0, the manufacturing automation is moving toward mass production and mass customization through human–robot collaboration. The purpose of this…

2172

Abstract

Purpose

In the present era of Industry 4.0, the manufacturing automation is moving toward mass production and mass customization through human–robot collaboration. The purpose of this paper is to describe various human–robot collaborative (HRC) techniques and their applicability for various manufacturing methods along with key challenges.

Design/methodology/approach

Numerous recent relevant research literature has been analyzed, and various human–robot interaction methods have been identified, and detailed discussions are made on one- and two-way human–robot collaboration.

Findings

The challenges in implementing human–robot collaboration for various manufacturing process and the challenges in one- and two-way collaboration between human and robot are found and discussed.

Originality/value

The authors have attempted to classify the HRC techniques and demonstrated the challenges in different modes.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 July 2020

Zoltan Dobra and Krishna S. Dhir

Recent years have seen a technological change, Industry 4.0, in the manufacturing industry. Human–robot cooperation, a new application, is increasing and facilitating…

1290

Abstract

Purpose

Recent years have seen a technological change, Industry 4.0, in the manufacturing industry. Human–robot cooperation, a new application, is increasing and facilitating collaboration without fences, cages or any kind of separation. The purpose of the paper is to review mainstream academic publications to evaluate the current status of human–robot cooperation and identify potential areas of further research.

Design/methodology/approach

A systematic literature review is offered that searches, appraises, synthetizes and analyses relevant works.

Findings

The authors report the prevailing status of human–robot collaboration, human factors, complexity/ programming, safety, collision avoidance, instructing the robot system and other aspects of human–robot collaboration.

Practical implications

This paper identifies new directions and potential research in practice of human–robot collaboration, such as measuring the degree of collaboration, integrating human–robot cooperation into teamwork theories, effective functional relocation of the robot and product design for human robot collaboration.

Originality/value

This paper will be useful for three cohorts of readers, namely, the manufacturers who require a baseline for development and deployment of robots; users of robots-seeking manufacturing advantage and researchers looking for new directions for further exploration of human–machine collaboration.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 4 of 4